Duração:
1 dia
Próxima Data:
Consulte-nos
Local:
Online
Descrição
This one-day instructor-led course introduces participants to the big data capabilities of Google Cloud Platform. Through a combination of presentations, demos, and hands-on labs, participants get an overview of the Google Cloud platform and a detailed view of the data processing and machine learning capabilities. This course showcases the ease, flexibility, and power of big data solutions on Google Cloud Platform.
*PVP por participante. A realização do curso nas datas apresentadas está sujeita a um quórum mínimo de inscrições. "
Destinatários
- Data analysts, Data scientists, Business analysts getting started with Google Cloud Platform.
- Individuals responsible for designing pipelines and architectures for data processing, creating and maintaining machine learning and statistical models, querying datasets, visualizing query results and creating reports.
- Executives and IT decision makers evaluating Google Cloud Platform for use by data scientists.
-
Área: Google Cloud
-
Certificação Associada: This course is part of the following Certifications: Google Cloud Certified Professional Machine Learning Engineer (PMLE), Google Cloud Certified Professional Data Engineer (PDE)
Programa:
Module 1: Introducing Google Cloud Platform
- Google Platform Fundamentals Overview.
- Google Cloud Platform Big Data Products.
Module 2: Compute and Storage Fundamentals
- CPUs on demand (Compute Engine).
- A global filesystem (Cloud Storage).
- Cloud Shell.
- Lab: Set up an Ingest-Transform-Publish data processing pipeline.
Module 3: Data Analytics on the Cloud
- Stepping-stones to the cloud.
- Cloud SQL: your SQL database on the cloud.
- Lab: Importing data into CloudSQL and running queries.
- Spark on Dataproc.
- Lab: Machine Learning Recommendations with Spark on Dataproc.
Module 4: Scaling Data Analysis
- Fast random access.
- Datalab.
- BigQuery.
- Lab: Build machine learning dataset.
Module 5: Machine Learning
- Machine Learning with TensorFlow.
- Lab: Carry out ML with TensorFlow
- Pre-built models for common needs.
- Lab: Employ ML APIs.
Module 6: Data Processing Architectures
- Message-oriented architectures with Pub/Sub.
- Creating pipelines with Dataflow.
- Reference architecture for real-time and batch data processing.
Module 7: Summary
- Why GCP?
- Where to go from here
- Additional Resources
Pré-requisitos:
- Basic proficiency with common query language such as SQL.
- Experience with data modeling, extract, transform, load activities.
- Developing applications using a common programming language such Python.
- Familiarity with machine learning and/or statistics.
Partilha: